

An Approach to Develop a Green Building Database for Residential buildings

Jialei Shen¹ and **Jianshun "Jensen" Zhang**^{1,2}

Building Energy and Environmental Systems Laboratory (BEESL), Syracuse University

¹ Department of Mechanical and Aerospace Engineering, Syracuse University

² School of Architecture and Urban Planning, Nanjing University

Introduction background

Buildings consume considerable amount of resources like energy, water and building materials during their constructing and operating, and may affect the local/global environment as well, e.g. producing greenhouse gases and affecting urban heat island. IEQ performance can affect occupant health, perception, comfort and working efficiency.

Buildings are expected to have **high performance** (energy efficiency, IAQ, thermal comfort...)

High-performance building cases

Introduction database for green buildings

Database Name

Building Performance Database (BPD) EnerGuide for Houses Database (EGHD) Low Energy Building (LEB) Database Institute

LBNL
Natural Resources Canada
Technology Strategy Board of UK

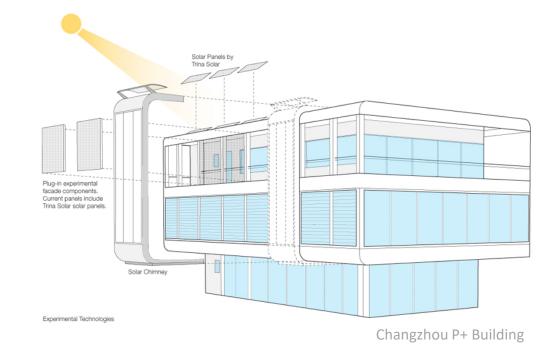
Scope

Canada

UK

US

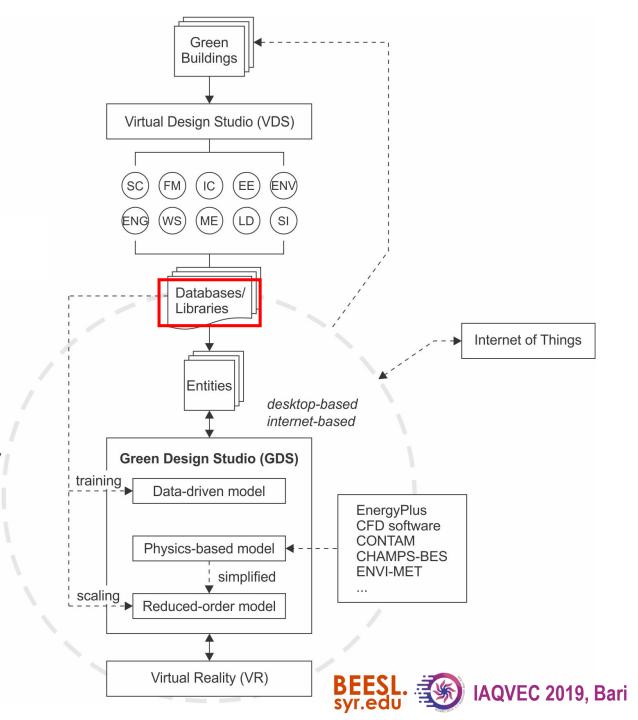
. . .



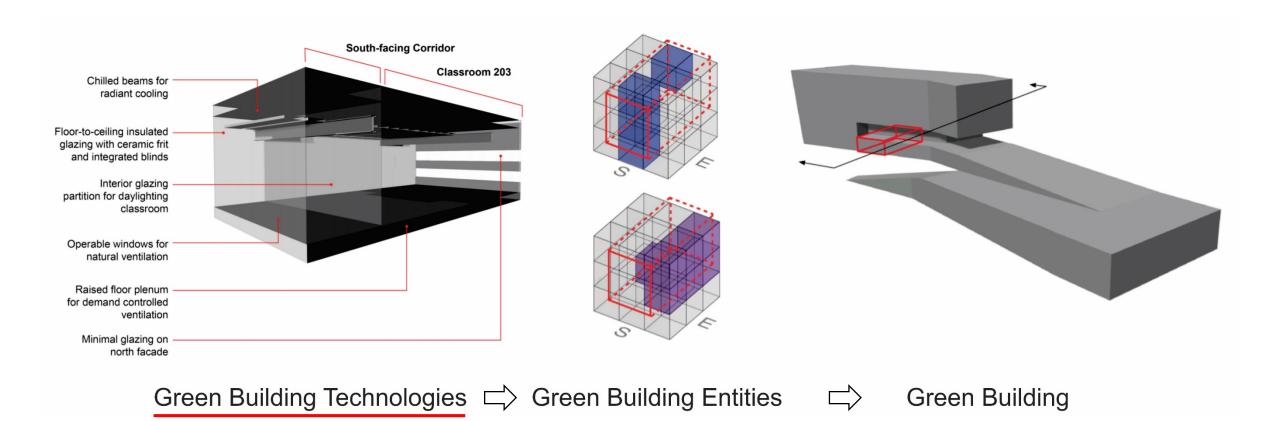
Whole-building performance (measured and/or simulated)

There's no available green building database based on the performance for building technologies

Module-based high-performance building design



Introduction module-based design


Database based on the performance for green building technologies

Module-based high-performance building design

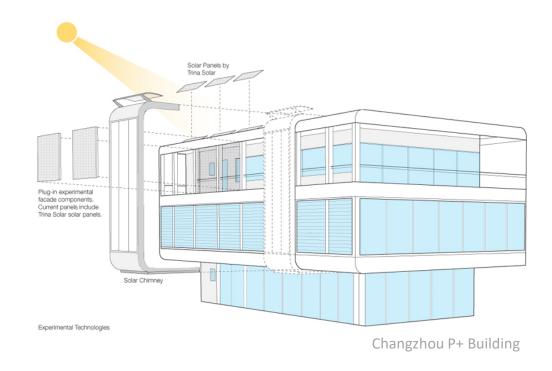
Introduction module-based design

Green Building Technologies (GBT) definition & data collection

Green building

Buildings that can elevate their performance against the *local* reference buildings

Green building technologies

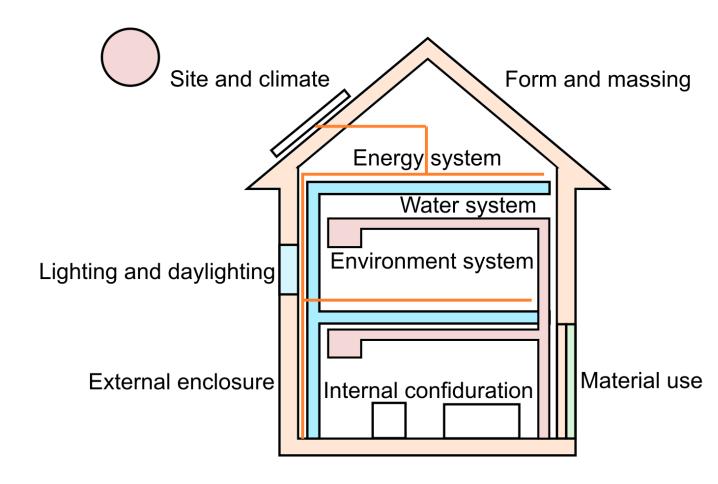

Building-related technologies and design features which can improve the building performance

Local reference building

A building with typical building features and technologies in a local area/climate zone

Data collection

- Cases from existing green building databases
- Green building cases from literature
- Existing green buildings



Green Building Technologies (GBT) classification

Green Building Technologies related to ...

- 1. Site & Climate (SC)
- 2. Form & Massing (FM)
- 3. Internal Configuration (IC)
- 4. External Enclosure (EE)
- 5. Environmental System (ENV)
- 6. Energy System (ENG)
- 7. Water System (WS)
- 8. Lighting & Daylighting (LD)
- 9. Material & Embodied Energy (ME)
- 10. System Interdependence (SI)

System interdependence

Green Building Technologies (GBT)

summary

GBT data collected from the residential buildings of Low Energy Building (LEB) database and literature.

GBTs were categorized to passive technologies, service systems and renewable energy generation technologies.

X. Cao, X. Dai, J. Liu, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade, Energy Build. 128 (2016) 198–213.

	Cotonomic	CDT	Design factors									
	Category	GBT	SC	FM	IC	EE	ENV	ENG	WS	ME	LD	S
Passive technologies	Building envelope	Thermal insulation				✓				✓		
		Ventilated/double-skin walls/roofs/floors				✓						
		Passive solar walls	✓			✓						
		Energy-saving glazing technologies	✓			✓				✓	✓	
		Passive shading technologies	✓	✓							✓	
		Low infiltration				✓						
		Solar-reflective/cool roofs	✓			✓				✓		
		Green roofs	✓			✓						
		Evaporative roof cooling				√						
	Passive heating, cooling &	Nighttime ventilation	✓				✓					
	ventilation	Earth-to-air heat exchange	✓				✓					
		Natural ventilation	√				✓					
		Solar chimney	√			√	√					
	Thermal storage	Phase-change materials				√				√		
		Thermal mass		√						✓		
Service systems	HVAC	Evaporative cooling					√					
		Active thermal storage					✓					
		Heat recovery					✓					
		Radiant heating/cooling			✓		✓					
		VAV/VRF					✓					
	DWH	Solar water heater	✓						✓			
		Solar-assisted heat pump system	✓						✓			
		Combined cooling, heating and power							✓			√
	Lighting	Daylight harvesting	✓								✓	
		LEDs									✓	
		Energy efficient lighting									✓	
		Active shading technologies	✓								✓	
	Appliances	Energy-efficient appliances										
Renewable energy	Solar energy	PV/building integrated PV	✓					✓				_/
generation		Hybrid PV-thermal	✓					✓				_
	Wind energy	Wind turbine	✓					√				
	Geothermal energy	Ground source heat pump	✓					✓				
	Bioenergy	Biomass heater						√				_

Building Performance Assessment performance aspects

Performance aspects of different green building standards

VDS	LEED (USGBC 2009)	ASHRAE 189.1 (ASHREA 2009)	BREEAM (UK) (BREEAM 2011)	DGNB (Germany) (DGNB 2008)	WBDG (PNNL 2005)		
Site sustainability Site selection Mitigation of heat island effect Reduction of light pollution	Sustainable sites Site selection Site development Alternative transportation Stormwater mgt. Landscape design and reduction of heat island Light pollution reduction	Site sustainability Site selection Mitigation of heat island effect Reduction of light pollution Site development	Land use and ecology Site selection Site ecology Ecological impact Enhancing site ecology Long term impact on biodiversity Transport Transport accessibility Proximity to amenities	Ecological quality Impacts on global and local environment Quality of the process Quality of the planning Quality of the construction activities	Transportation • Regular commute		
Water efficiency • Site water use reduction • Building water use reduction • Water cons. measurement	Water efficiency • Water efficient landscaping • Innovative waste water technologies • Water use reduction	Water use efficiency • Site water use reduction • Building water use reduction • Water cons. measurement	Water • Water cons. • Water monitoring • Water leak prevention • Water efficient equipment	Socio-cultural and functional quality • Performance • Functionality Technical quality • Quality of the technical implementation	Water Total building water use Indoor potable water use Outdoor water use Total storm sewer output		
Energy and atmosphere • Energy efficiency measures • On-site renewable energy systems • Energy cons. mgt.	Energy and atmosphere Commissioning of the building energy systems Refrigerant mgt. Optimize energy performance On-site renewable energy Green power	On-site renewable energy systems Energy cons. mgt. Energy performance of building systems	Energy • Reduction of CO ₂ emissions • Energy monitoring • External lighting • Low/zero carbon technologies • Energy efficient systems	Socio-cultural and functional quality • Performance • Functionality Technical quality • Quality of the technical implementation	Total building energy use Source energy Peak electricity demand		
Indoor environmental quality Indoor air quality Indoor air quality Thermal environmental condition Acoustical control Lighting	Indoor environmental quality IAQ performance Outdoor air monitoring IAQ mgt. plan Pollutant source control Thermal comfort Daylight & views	 Acoustical control 	Health & wellbeing Visual comfort Indoor air quality Thermal comfort Water quality Acoustic performance Safety and security	Socio-cultural and functional quality Performance Health, comfort and user satisfaction Functionality Technical quality Quality of the technical implementation	Occupant health and productivity Occupant turnover rate Absenteeism Building occupant satisfaction Self-rated productivity		
Materials and resources Isolation pollutants in the soil Waste mgt. Materials use Refrigerants use Life-cycle assessment	Materials and resources Storage & collection of recyclables Construction waste management Materials reuse Regional materials Rapidly renewable materials	Buildings impact on the Atm. materials and resources I solation pollutants in the soil Construction waste mgt. Materials manufacturing Refrigerants use Life cycle assessment	 Life cycle impacts Sourcing of materials Insulation Designing for robustness 	Ecological quality Impacts on global and local environment Utilization of resources and waste arising Economical quality Life cycle costs	Waste generation • Solid sanitary waste • Hazardous waste • Recycled materials		

Performance aspects for GBT database

measured
simulated
currently used

- Site
- -> urban heat island effect
- -> urban ventilation performance

Energy efficiency

- -> energy consumption
- -> renewable energy use

Water efficiency

-> water consumption

IEQ

- -> thermal comfort
- -> IAQ
- -> ventilation rate
- -> pollutant level
- -> lighting
- -> acoustic

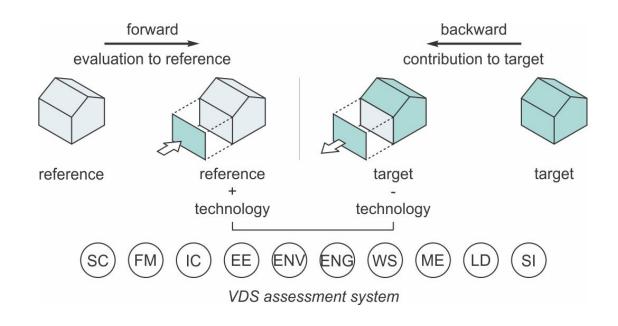
Material and resource

- -> material use
- -> waste management
- -> life-cycle assessment

Building Performance Assessment assessment approach

How to assess the green building performance against local reference building?

Forward step evaluation of performance improvement potential to reference building


Backward step evaluation of performance improvement contribution to target building

Assessment method

-> Simulation

Assessment tools

- -> EnergyPlus
 - -> energy use
 - -> water use
 - -> thermal comfort
 - -> material use...
- -> CONTAM
 - -> ventilation
 - -> pollutant level...

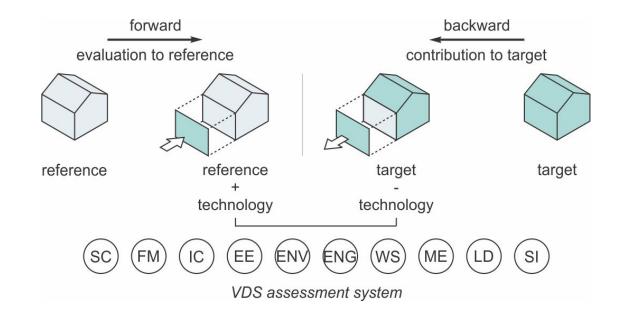
Building Performance Assessment assessment approach

Performance improvement potential (P_i)

$$P_i = (E_{ref} - E_{ref+i})/E_{ref}$$

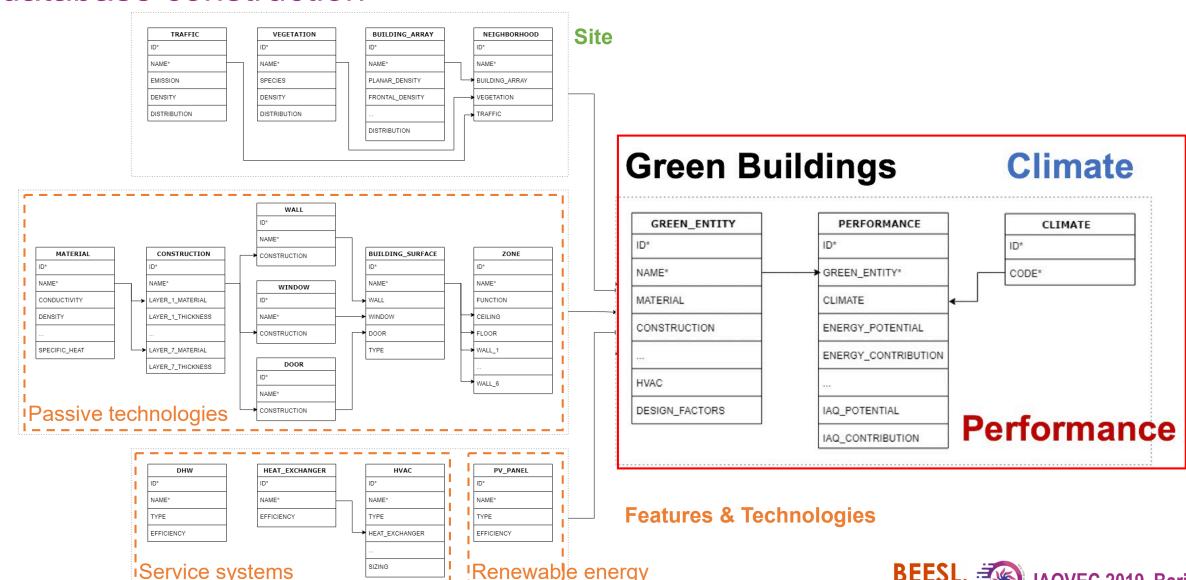
 E_{ref} – performance effects (energy use, water use or thermal comfort...) of reference building;

 E_{ref+i} – performance effects (energy use, water use or thermal comfort...) of building with technology i;


Performance improvement contribution (α_i)

$$\alpha_i = (P_{\Sigma} - P_{\Sigma - i})/P_i$$

Scaling factor (β_i)


$$\beta_i = P_i'/P_i$$

 P_i' – performance potential of technology *i* in different conditions;

Building Performance Assessment

database construction

Case study information

Building type:

Single-family house (223.07m² conditioned area)

Location:

New York City (climate zone: 4A)

Miami (climate zone: 2A)

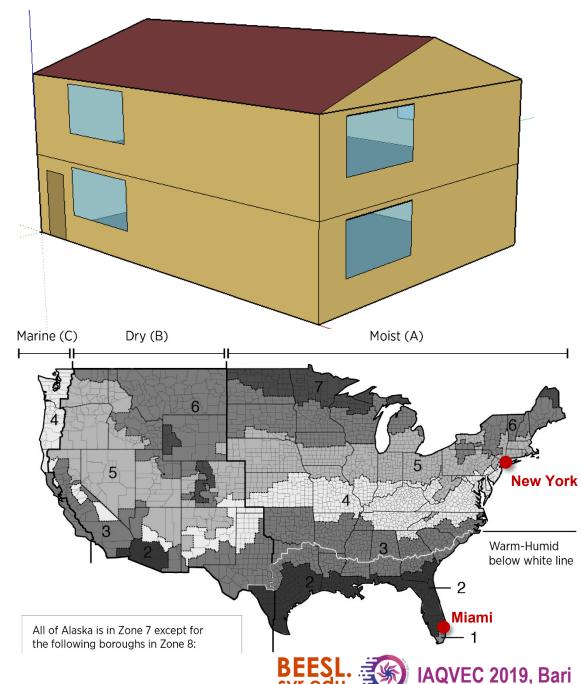
Local reference building:

A two-story house with pitched roof and unconditioned attic (Building America Protocols from NREL)

GBTs used in case study:

highly-insulation exterior wall

controlled shading system


air-tight wall assembly

Performance aspect:

Energy consumption (heating & cooling)

Assessment tool:

EnergyPlus

Case study results

Energy use of different cases using different GBTs

Study case	Climate Zone ¹	Energy use [kWh/m²]	Ref			::		::	!!	
New York City, NY	4A	Annual	55.1	51.7	54.3	45.6	51.0	42.3	44.9	41.7
Miami, FL	2A	Annual	26.6	25.7	26.5	24.3	25.6	23.4	24.2	23.3

¹ Climate zone defined in ASHARE 169.

Performance potential (P_i) and contribution (α_i) for different GBTs in each case

G. 1	CDE	n	$a_i{}^I$					
Study case	GBT	P_i			••			
	(High-insulated wall)	0.061	/	0.98	0.98	0.96		
New York City	(Controlled shading)	0.013	0.92	/	0.99	0.92		
	(Air-tight wall)	0.172	0.99	1.00	/	0.99		
	(High-insulated wall)	0.034	/	0.99	0.96	0.95		
Miami	(Controlled shading)	0.006	0.93	/	0.95	0.89		
	(Air-tight wall)	0.086	0.98	1.00	/	0.98		

¹ The performance contribution here is the contribution of the studied technology to the combination with different technologies.

- highly-insulation exterior wall
- air-tight wall assembly

- Air-tight wall has highest performance improvement potential in both NYC and Miami, while high-insulated wall and shading system have lower potential.
- Same GBT performs differently in different climate zones.
- The studied three GBTs don't affect each others' performance a lot since the coefficient (α_i) when a technology working with another technology is very close to 1 (0.89-1.00).

Conclusions & Prospects

- 1. Green building database based on building features and technologies is essential for module-based green building design, but is still scarce;
- 2. Performance assessment coefficients are suitable for the evaluation of performance improvement potential and contribution, as well as synergistic effect;
- 3. The database covers multiple performance aspects and can work in different climate zones;
- 4. More diverse building cases should be added to the database.

Thank you!

Questions & Comments

Jianshun "Jensen" Zhang

E: jszhang@syr.edu

W: BEESL.syr.edu

