

Building Energy and Environmental Systems Laboratory (BEESL) Department of Mechanical and Aerospace Engineering College of Engineering and Computer Science Syracuse University

Performance of in-duct bipolar ionization devices on pollutant removal and potential byproduct formation in indoor environments

Jialei Shen¹, Zhenlei Liu¹, Daniel Love², Mary Dekold², Beverly Guo¹, Michael J. Birnkrant², Peter J. McKinney², Bing Dong¹ and Jianshun Zhang^{1,3}

Syracuse University
 Carrier Global Corporation
 Nanjing University

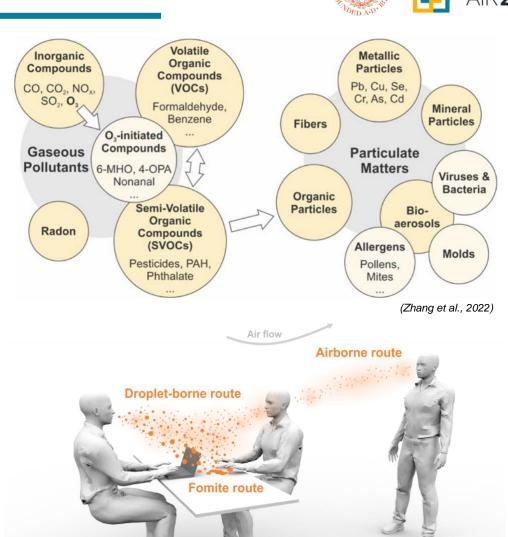
Background

Transmission of SARS-CoV-2

IAQ and air cleaning technologies

Indoor air quality (IAQ) is vital to human health, comfort, productivity, and wellbeing.

Air cleaning technologies:


- Filtration
- Sorption
- Ionization
- Oxidation
- UVGI
- ..

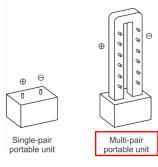
Induct unit

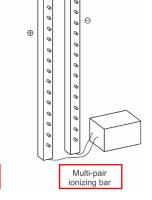
Background

In-duct needlepoint bipolar ionization technology

Air ions:

- attachment to particles → charge particles
- contact with a surface
- recombination with other ions
- reaction with gaseous molecules


Commercially available needlepoint bipolar ionization devices:


- Generation of positive and negative air ions
- · Charging particles for removal
- Inactivation of pathogen-laden particles
- Low ionization voltage (< 12V) to minimize the release of ozone and other byproducts


Typical configurations of induct bipolar ionizers:

- Single-pair portable unit
- Multi-pair portable unit
- Multi-pair ionizing bar

(Airiusfans, 2022)

MERV 8 filter

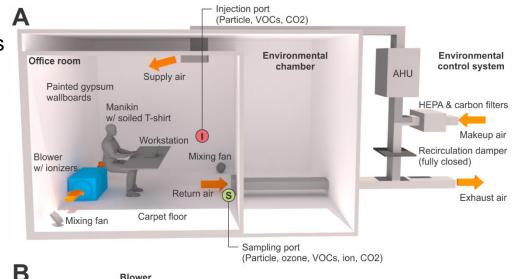
Downstream

(Ion samples)

0.15m

Operation conditions

Tested bipolar ionization configurations:


- Configuration A (Ionizer A): Ionizing bar (4 bars), 34 pairs of +/- poles → mounted on a MERV 8 filter
- Configuration B (Ionizer B): Multi-pair portable unit, 6 pairs of +/- poles

Tested duct (to simulate a realistic AHU):

- A blower system placed in the chamber (a metal box/duct with a controllable blower fan at the inlet)
- A MERV 8 filter installed at the outlet (with the I-A mounted at the upstream side)
- I-B installed 0.25m upstream of the filter
- Q = 505 m3/h during the tests

Full-scale environmental chamber with real-scenario office settings:

- Full-scale stainless-steel chamber in BEESL
- A full-scale single office built inside the chamber $(3.5 \times 3.0 \times 2.7 \text{ m})$
- Carpet, painted gypsum wallboard, table, partitions, heated manikin with soiled T-shirt
- Airflow rates: airtightness 0.01 ACH; low airflow Q = 24.0 m3/h (minimal value by ASHRAE), high airflow Q = 55.6 m3/h
- Two mixing fans

(mounted on filter)

Ionizer B

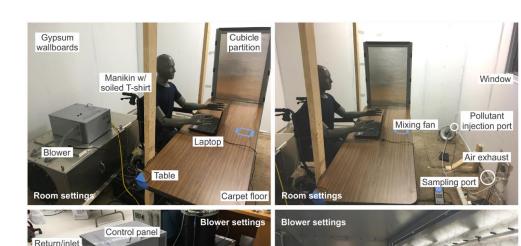
(portable)

Blower fan

Blowe

Operation conditions

Particle injection:


- 8-jets nebulizer
- Purified clean air + salt solution
- Nominal injection airflow rate = 18 L/min
- Maintaining the steady-state PM2.5 below 100 200 μg/m3 (close to the worst-case indoor concentration)

VOC (formaldehyde and toluene) injection:

- Dynacalibrator (VICI Metronics, Inc.)
- Formaldehyde and toluene permeation tubes used
- Target background level of 39.3 μg/m3 for HCHO and 189.6 μg/m3 for toluene

Heated manikin with soiled T-shirt (skin oil):

- A freshly cleaned T-shirt worn by a volunteer overnight prior the test day
- Manikin maintained at 33.9 degC
- Summer clothes (T-shirt + long trousers), 0.43 clo

Supply/outlet

Measurements

Monitors:

Particles: APS,

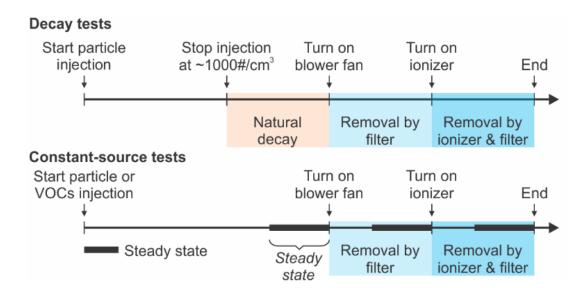
Ozone: 2B Tech Ozone monitor,

 VOCs: DNPH and Sorbent samples (HPLC and GCMS), PTRMS for background VOC level (w/ injection)

CO2: Gas Monitor and HOBO CO2 logger

Negative ion: Air ion counter

Sampling location:


Exhaust of the room (return air)

Procedure

Decay ("pull-down") tests
Constant-source tests

Test method	Test ID	Test condition	Airflow condition	Injected pollutants	Test date	
Decay test	Test 1	Natural decay	Infiltrationa	Particles	Dec 1st, 2021	
	Test 2	Blower w/ MERV 8 filter	Infiltration	Particles	Nov 29th, 2021	
	Test 3	Ionizer A & filter	Infiltration	Particles	Nov 28th, 2021	
	Test 4	Ionizer B & filter	Infiltration	Particles	Nov 30th, 2021	
	Test 5	Ionizer B (w/t filter)	Infiltration	Particles	Dec 10th, 2021	
Constant-source test	Test 6	Ionizer A & filter	Low airflow ^b	Particles	Oct 28th, 2021	
	Test 7	Ionizer A & filter	Low airflow	Particles	Nov 24th, 2021	
	Test 8 Ionizer A & fi		High airflow ^c	Particles	Feb 14th, 2022	
	Test 9	Ionizer A & filter	High airflow	Particles	Feb 14th, 2022	
	Test 10	Ionizer A & filter	Low airflow	VOCs	Nov 23rd, 2021	

^a Infiltration: Environmental system was fully closed. There was only natural infiltration existing in the room, $\lambda_{byf} = 0.01h^{-1}$ (0.3 m³/h).

^b Low airflow: $Q = 24.0 \text{ m}^3/\text{h}$.

c High airflow: Q = 55.6 m3/h.

Data analysis

Single-zone model

$$\lambda C_{in} = \lambda C_{out} - k_{dep} C_{in} + \frac{E}{V}$$

Decay tests

$$C_t = C_0 \cdot e^{-\lambda t}$$

$$\lambda = k_n + k_{AC} = (\lambda_{inf} + k_{dep}) + k_{filter} + k_{ionizer}$$

$$\lambda = \lambda_{inf} + \lambda_Q = \lambda_{inf} + \frac{Q}{V}$$

Clean air delivery rate (CADR) and single-pass removal efficiency (SPRE)

$$CADR = k_{AC} \cdot V$$
 $CADR = (Q + k_{dep} \cdot V) \cdot (\frac{c_1}{c_2} - 1)$ $SPRE = \frac{CADR}{Q_{AC}}$

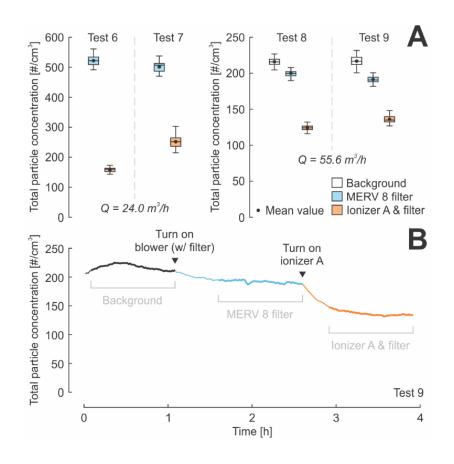
Particle removal performance

Decay tests

Tests	Test 1	Test 2	Test 3	Test 4	Test 5	
Test conditions	Natural decay	Filter (MERV 8)	I-A + filter	I-B + filter	I-B (w/t filter)	
Natural decay rate ^a [h ⁻¹]	0.22	0.25	0.24	0.25	0.20	
Removal rate [h-1]	/	0.54	1.82	1.59	0.87	
		0.29 (w/t decay)	1.58 (w/t decay)	1.34 (w/t decay)	0.67 (w/t decay)	
$CADR_{PM}$ [m^3/h]	/	15.7	53.0	46.3	25.3	
		8.5 (w/t decay)	46.0 (w/t decay)	38.9 (w/t decay)	19.4 (w/t decay)	
SPRE _{PM} [%]	/	3.1	10.5	9.2	5.0	
	1	1.7 (w/t decay)	9.1 (w/t decay)	7.7 (w/t decay)	3.8 (w/t decay)	

^a Natural decay rate (k_n) : the combined effect of infiltration (λ_{inf}) and particle natural deposition (k_{dep}) .

Airtightness: ACH = 0.01 /h


The combined use of ionizers (A and B) and MERV 8 filter showed an absolute increase on SPRE_{PM} by about 6-7.4%

The ionizer B alone (i.e., without the MERV 8 filter) provided very limited particle removal efficiency (3.8%).

Particle removal performance

Constant-source tests

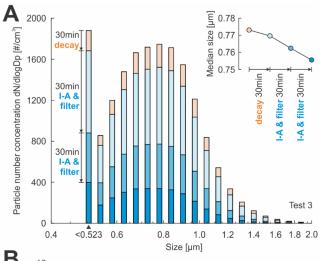
Toot Q kdep·Va		$k_{dep} \cdot V^a$	Average total particle number level in each state [#/cm³]			(CADR _{PM} b [n	n³/h]	SPRE _{PM} ^b [%]		
Test	[m ³ /h]	[m ³ /h]	Bkg	Blower on Ionizer A (w/ filter) on		MERV 8 filter	Ionizer A Ionizer A ^c & filter		MERV 8 filter	Ionizer A Ionizer A & filter	
6	24.0	6.1	/	521.4	159.1	/	/	68.5	/	/	13.6
7	24.0	6.1	/	500.7	251.7	/	/	29.8	/	/	5.9
8	55.6	6.1	215.5	199.7	124.5	4.9	45.1	37.3	1.0	8.9	7.4
9	55.6	6.1	217.3	191.6	136.6	8.3	36.5	24.8	1.6	7.2	4.9
8d	55.6	6.1	/	/	/	/	52.6e	/	/	10.4e	/

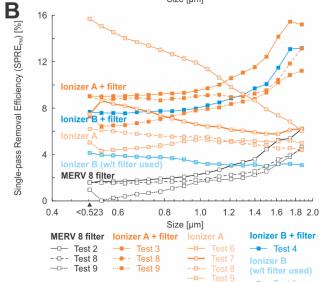
^a Assuming a constant particle deposition rate $k_{dep} = 0.21 \, h^{-1}$. The estimated CADR_{PM} and SPRE_{PM} for the scenario with ionizer A and filter, and the scenario with ionizer A individually, may be underestimated as the actual particle deposition rate was likely higher when the ionizer was working.

^b Particle removal due to natural deposition were ruled out.

Filter Filter + I-A \rightarrow Individual I-A SPRE_{PM} 1.0 – 1.6% 7.2 – 10.4% \rightarrow 4.9 – 13.6%

^c The CADR of ionizer was calculated through Eq. (6), instead of subtracting the CADR of filter from the CADR of ionizer and filter.


^d A decay test was performed along with the constant-source test of Test 8. The overall decay rate estimated from the exponential regression was 3.86 h⁻¹ (including natural deposition and dilution by fresh air supplied by the control system Q).


e Excluding natural deposition and dilution by fresh air supply.

Particle removal performance

Particle size distribution

		Size-specific average SPRE _{PM} [%]						
Configurations	Test							
		0.5-1.0 μm	1.0-2.0 μm					
MERV 8 filter	Test 2	1.9	4.1					
	Test 8	0.8	2.6					
	Test 9	1.6	2.9					
	Mean±SD	1.4 ± 0.6	3.2±0.8					
Ionizer A/B + filter	Test 3	9.2	12.2					
	Test 4	7.7	10.3					
	Test 8	8.8	10.0					
	Test 9	7.0	9.3					
	Mean±SD	8.2±1.0	10.5±1.2					

MERV 8 filter removed larger particle more efficiently

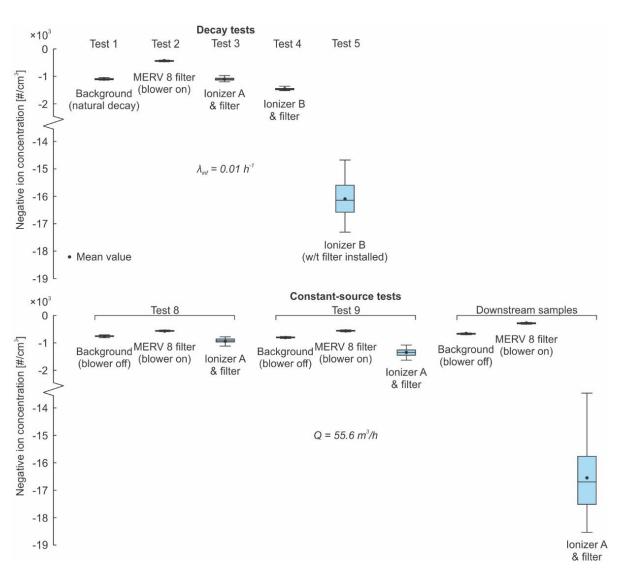
I-A and I-B alone removed smaller particles more readily

When integrated with the filter, ionization can improve the particle efficiency considerably for greater particles.

→ It is preferred to apply ionizers in the air duct integrated with the filter rather than using the ionizer independently

Byproduct formation – Air ions

Adverse effects on cardiovascular health were observed when people were exposed to 13×10³ #/cm3 and 60×10³ #/cm3 level of airborne negative ions in literature


→ Maintaining the indoor air ion at a relatively healthy level

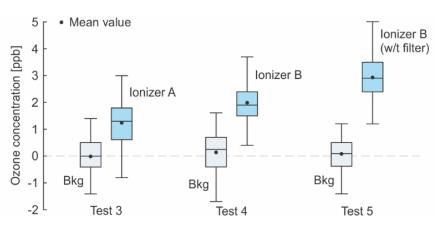
I-A released negative ions to indoor air at a rate between 5.1×10¹¹ and 9.8×10¹¹ #/h (with filter)

I-B generated negative ions at a rate of 5.4×10¹³ #/h (w/t filter) and 1.3×10¹² #/h (w/ filter), indicating a significant reduction of 97.6% through the filter

→ Filter (at downstream) can remove most air ions (almost 100% drop of air ions through MERV 11-12 filters in literature)

Negative ions were decomposed very quickly in the fully mixed space

Byproduct formation – Ozone


Slight ozone increase/generation during decay tests (ACH = 0.01 /h)

• I-A + filter: 0.39 mg/h

• I-B + filter: 0.63 mg/h

• I-B: 0.92 mg/h

No ozone generation detected during constant-source tests (realistic scenarios)

Ozone concentrations in decay test

VOC removal and formation

The variation of VOC concentrations before/after using ionizers were within the background fluctuation (PTRMS data)

No VOC removal or formation were detected

		VOC concentration at different test conditions [μg/m³]						%	Relative SD	
	-	Dlea	Blower on (with filter)			Ionizer A on			change	of reference
Compounds	Formula	Bkg	Set 1 ^b	Set 2	Mean	Set 1	Set 2	Mean	after	bkg VOC
		t = 0h	t = 9h	t = 12h	/	t = 18h	t = 50h	/	using ionizer	levels ^c [%]
Formaldehyde ^a	CH2O	20.6	18.4	19.8	19.1	19.5	22.1	20.8	+8.9%	4.3%
Acetaldehyde	C2H4O	6.6	5.2	5.0	5.1	4.9	4.3	4.6	-9.8%	12.5%
Acetone	C3H6O	9.1	9.0	9.4	9.2	10.1	10.4	10.3	+12.0%	10.5%
Benzene	C6H6	1.8	1.8	1.7	1.8	1.8	1.8	1.8	0.0%	66.7%
Toluene ^a	C7H8	138.7	141.5	139.9	140.7	144.1	150.3	147.2	+4.6%	4.0%
Cyclotrisiloxane, hexamethyl-	C6H18O3Si3	3.8	3.1	3.2	3.2	3.2	3.6	3.4	+6.2%	25.0%
Hexanal	C6H12O	2.5	2.3	2.3	2.3	2.4	2.7	2.6	+13.0%	6.0%
Ethylbenzene	C8H10	n.d.	n.d.	n.d.	n.d.	1.1	1.2	1.2	+	n.d.
Cyclotetrasiloxane, octamethyl-	C8H24O4Si4	2.8	1.6	1.6	1.6	1.6	1.8	1.7	+6.2%	38.8%
Benzaldehyde	C7H6O	2.2	1.8	2.0	1.9	2.3	2.2	2.2	+15.8%	207.7%
2(5H)-Furanone, 3-methyl-	C5H6O2	2.2	1.8	n.d.	1.8	n.d.	n.d.	n.d.	-	n.d.
Phenol	C6H6O	1.0	0.8	0.9	0.9	0.9	0.9	0.9	0.0%	12.5%
Cyclopentasiloxane, decamethyl-	C10H30O5Si5	1.4	1.1	1.4	1.3	1.4	2.1	1.7	+30.8%	18.8%
Acetophenone	C8H8O	2.5	1.5	1.0	1.2	1.0	1.1	1.1	-8.3%	32.0%
Nonanal	C9H18O	1.3	1.1	1.1	1.1	1.5	1.8	1.7	+54.5%	47.8%
Naphthalene	C10H8	2.2	2.0	1.7	1.9	1.5	1.9	1.7	-10.5%	n.d.
Propanoic acid, 2-methyl-, 1-(1,1-	C16H30O4	4.1	5.3	5.6	5.4	5.7	5.4	5.6	+3.7%	27.6%
dimethylethyl)-2-methyl-1,3-										
propanediyl ester										
TVOC	/	202.8	198.3	196.6	198.5	203.0	213.6	208.5	+5.0%	/

^a Injected compounds.

^b Two duplicated samples were collected for each sampling set. The average of two duplicated samples was calculated and presented in the table.

c From Table 6.

Electric power (measured by a power line meter)

I-A: 0.4 W

I-B: 1.0 W

Typical power of portable air cleaners: 56 W (median)

 \rightarrow Power / CADR_{PM}:

I-A: 0.006 – 0.016 W/(m3/h) I-B: 0.033 – 0.052 W/(m3/h)

Typical portable air cleaners: 0.15 W/(m3/h)

→ Moderate particle removal efficiency, no significant byproduct formation, low energy use, (price of ionizer?)

Conclusions

- 1. With the application of ionizer, the equivalent SPRE_{PM} increased from 1.0-1.7% for the regular MERV 8 filter to 7.2-10.4% for the combined ionizer A/B and filter assembly
- 2. Most ions generated by the ionizer were trapped/captured by the filter
- 3. No significant ozone and VOC generated under realistic scenarios
- 4. No VOC removal
- 5. Cost and efficacy: Moderate particle removal efficiency, but low energy use

Acknowledgement

Syracuse University
Carrier Global Corporation

Thanks!

Jialei Shen jshen20@syr.edu